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SL(2; R) Duality of the Noncommutative
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We study the action of the SL(2; R) group on the noncommutative DBI Lagrangian. The
symmetry conditions of this theory under the above group will be obtained. These con-
ditions determine the extra U(1) gauge field. By introducing some consistent relations
we observe that the noncommutative (or ordinary) DBI Lagrangian and its SL(2; R) dual
theory are dual of each other. Therefore, we find some SL(2; R) invariant equations. In
this case the noncommutativity parameter, its T -dual and its SL(2; R) dual versions are
expressed in terms of each other. Furthermore, we show that on the effective variables,
T -duality and SL(2; R) duality do not commute. We also study the effects of the SL(2;
R) group on the noncommutative Chern–Simons action.
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1. INTRODUCTION

SL(2; R) duality generalizes strong-weak coupling duality. There is an SL(2;
R) symmetry manifest in the low energy action, which is broken down to SL(2; Z)
in string theory. Also there is considerable evidence in favor of this duality being
an exact symmetry of the full string theory (Rey, 1991; Font et al., 1990; Duff
and Khuri, 1994; Sen, 1993,b,c; Schwarz and Sen, 1993; Duff and Rahmfeld,
1995; Hull and Townsend, 1995; Sen, 1994; Tseytlin, 1996). In fact, the SL(2; R)
group and its subgroup SL(2; Z) act as symmetry groups of many theories (Green
and Gutperle, 1996; Witten, 1996; Dc Roo, 1985; Schwarz, 1995; Gibbons and
Rasheed, 1996; Cederwall and Townsend, 1997; Sen, 1994; Rey and von Unge,
2001; Gopakumar et al., 2000; Lu et al., 2000, 2001; Berman, 1997; Hofman and
Verlinde, 1998; Chan et al., 2001; Cai and Ohta, 2000). Among these theories,
the noncommutative theories and the Dirac–Born–Infeld (DBI) theory are more
important, for example see the Refs. (Rey and von Unge, 2001; Gopakumar et al.,
2000; Lu et al., 2000, 2001; Berman, 1997; Hofman and Verlinde, 1998; Chan
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et al., 2001; Cai and Ohta, 2000; Born and Infeld, 1934; Leigh, 1989; Tseytlin,
1986, 1997; Fradkin and Tseytlin, 1985; Callan et al., 1987; Abouelsaood et al.,
1987).

Consider the SL(2; R) symmetry of the type IIB superstring theory (Rey,
1991; Font et al., 1990; Duff and Khuri, 1994; Sen, 1993,b,c; Schwarz and Sen,
1993; Duff and Rahmfeld, 1995; Hull and Townsend, 1995; Sen, 1994; Tseytlin,
1996). In the type IIB theory the R-R zero-form χ and the dilaton φ of the NS-NS
sector define a complex variable λ = χ + ie−φ . Under the SL(2; R) duality this
variable and also the NS-NS and R-R two-forms Bµν and Cµν transform as in the
following

λ → λ̃ = aλ + b

cλ + d
,

(
Bµν

Cµν

)
→

(
B̃µν

C̃µν

)
= (�T )−1

(
Bµν

Cµν

)
,

� =
(

a b

c d

)
∈ SL(2; R). (1)

In addition, the Einstein metric g(E)
µν = e−φ/2gµν remains invariant. Therefore, the

string coupling constant gs = eφ and the string metric gµν transform as follows

gs → g̃s = η2gs, gµν → g̃µν = ηgµν, η ≡ |cλ + d| . (2)

For slowly varying fields, the effective Lagrangian of the open string
theory is the DBI Lagrangian. For a review of this theory see Ref.
(Born and Infeld, 1934; Leigh, 1989; Tseytlin, 1986, 1997; Fradkin and Tseytlin,
1985; Callan et al., 1987; Abouelsaood et al., 1987) and references therein.
The equivalence of the noncommutative and ordinary DBI theories has been
proven (Seiberg and Witten, 1999). We shall concentrate on both of these
theories.

In Section 2, we shall present an SL(2; R) invariant argument for the ordinary
and noncommutative DBI Lagrangians. Therefore, for special Cµν a Dp-brane
with ordinary worldvolume, but modified tension will be obtained. In addition,
we obtain the auxiliary U(1) gauge field strength F̄µν (Townsend, 1997) in terms
of the other variables. This field with the U(1) field strength Fµν form an SL(2; R)
doublet.

In Section 3, by introducing a consistent relation between Bµν and B̃µν ,
a useful rule will be obtained. That is, the DBI theory and its SL(2; R) dual
theory are duals of each other. In other words, twice dualizing of the DBI the-
ory leaves it invariant. This reflection also holds for the noncommutative DBI
theory.

In Section 4, we shall obtain some relations between the effective open string
variables and their duals. Thus, SL(2; R) transformations on the noncommutative
DBI Lagrangian can be captured in the tension of the brane. On the other hand,
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we have the original noncommutative DBI theory with the modified tension. This
form of the dual theory leads to another solution for the auxiliary gauge field.

In Section 5, the noncommutativity parameter is related to its T -dual and its
SL(2; R) dual versions. We shall see that on the effective variables, T -duality and
SL(2; R) duality do not commute. In addition, the invariance of the quantity Gs

gs
,

under the T -duality and SL(2; R) duality will be shown.
In Section 6, we study the Chern–Simons (CS) action. For its commutative

theory, for example, see Ref. (Douglas; Li, 1996; Green et al., 1997) and for its
noncommutative version, e.g. see Ref. (Mukhi and Suryanarayana, 2000; Mukhi
and Suryanarayana; Liu and Michelson, 2001). The effects of the SL(2; R) group
on the noncommutative CS action will be studied. We observe that under twice
dualization this action remains invariant.

2. NONCOMMUTATIVE DBI LAGRANGIAN
AND ITS SL(2; R) DUALITY

Now we study the action of the SL(2; R) group on the noncommutative DBI
Lagrangian. We consider an arbitrary Dp-brane. Consider the noncommutative
DBI Lagrangian (Seiberg and Witten, 1999)

L̂(0) = 1

(2π )p(α′)
p+1

2 G
(0)
s

√
det(G(0) + 2πα′F̂ ) , (3)

where the index zero shows the cases with zero extra modulus, i.e. 	 = 0. From
the definitions of the open string variables G(0)µν , G(0)

s and the noncommutativity
parameter θ

µν

0 , in terms of the closed string variables gµν, Bµν and gs (whit
µ, ν = 0, 1, . . . , p),

G(0)µν = gµν − (2πα′)2(Bg−1B)µν,

θ
µν

0 = −(2πα′)2

(
1

g + 2πα′B
B

1

g − 2πα′B

)µν

,

G(0)
s = gs

(
det(g + 2πα′B)

det g

)1/2

, (4)

one can find their SL(2; R) transformations. We also require transformation of
F̂µν .

According to the following relation (Seiberg and Witten, 1999)

F̂ = (1 + Fθ )−1F , (5)

transformation of the noncommutative field strength F̂µν can be obtained from the
transformations of θµν and the ordinary field strength Fµν .

It has been discussed by Townsend (Townsend, 1997) that for D-string there
are two U(1) gauge fields Fµν and F̄µν , which form an SL(2; R) doublet, related
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to the doublet ( Bµν

Cµν
). Also see the Ref. (Townsend, 1992; Bergshoeff et al., 1992).

We assume that the field strength F̄µν can be applied to any Dp-brane. Therefore,
Fµν and F̄µν can be interpreted as DBI fields, but not both simultaneously. Thus,
the ordinary gauge field strengths Fµν and F̄µν transform in the same way as the
fields Bµν and Cµν ,

Fµν → F̃µν = dFµν − cF̄µν, F̄µν → ˜̄Fµν = −bFµν + aF̄µν. (6)

Imposing the SL(2; R) invariance on the ordinary (noncommutative) DBI theory,
gives F̄µν in terms of Fµν (Fµν and θµν).

2.1. Commutative Result

Consider the case Cµν = d
c
Bµν . This means that the field B̃µν is zero. In

other words, the transformed theory is not noncommutative. Therefore, the SL(2;
R) transformation of the Lagrangian (3) reduces to

L̃ = 1

(2π )p(α′)
p+1

2 η2gs

√
det(ηg + 2πα′(dF − cF̄)) . (7)

For F̄ = d−η

c
F − η

c
B, the Lagrangian (7) is proportional to the DBI

Lagrangian, i.e.,

L̃ = η
p−3

2 LDBI. (8)

This equation can be interpreted as follows. The Lagrangian L̃ describes the same
Dp-brane which is described by LDBI, but with the modified tension

T̄p = η(p−3)/2

(2π )p(α′)(p+1)/2gs

. (9)

For the D3-brane, theory is symmetric, i.e. L̃ = LDBI, as expected. For the strong
coupling of strings gs → ∞, the modified tension T̄p goes to zero. For the weak
coupling constant gs → 0, this tension for D-particle goes to zero, for D-string is
finite and for Dp-brane with p ≥ 2 approaches to infinity. We also can write

T̄p = 1

(2π )p(α̃′)
p+1

2 g̃s

, α̃′ = α′

η
. (10)

2.2. Noncommutative Result with � = 0

Now we find the conditions for the invariance of the noncommutative theory
with zero modulus 	. Consider the following relations between the scalars and
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2-forms

e2φ = c2

1 − (cχ + d)2
, Cµν = d − 1

c
Bµν , (11)

which are equivalent to η = 1 and B̃µν = Bµν , respectively. These assumptions
lead to the relations G̃(0)

s = G(0)
s , G̃(0)µν = G(0)µν and θ̃

µν

0 = θ
µν

0 . In addition, the

field strength should be selfdual or anti-selfdual, i.e., ˜̂F = ±F̂ . Therefore, the
noncommutative theory (3) becomes SL(2; R) invariant. Since for any matrix M

there is det M = det MT , the anti-selfdual case for the Lagrangian (3) also is
available. In other words, we have det(G(0) − 2πα′F̂ ) = det(G(0) − 2πα′F̂ )T =
det(G(0) + 2πα′F̂ ).

According to the Equation (5), the condition on the field strength F̂ gives F̃

and consequently F̄ in terms of F and θ0,

F̄ = d

c
F ∓ 1

c
[F−1 + (1 ∓ 1)θ0]−1 . (12)

This is a way to determine the auxiliary field strength F̄µν . For the selfdual case
(i.e. the upper signs) the field strength F̄ is proportional to F . For the anti-selfdual
case (i.e. the lower signs) we have

1

F
+ 1

F̃
= 2

−θ−1
0

. (13)

This means that, −θ−1
0 is harmonic mean between F and F̃ . The Equation (13)

for the commutative case gives an anti-selfdual F , i.e. F̃ = −F .

2.3. Noncommutative Result Including �

The noncommutative DBI Lagrangian with arbitrary noncommutativity
parameter has the dual form

˜̂L = 1

(2π )p(α′)
p+1

2 G̃s

√
det(G̃ + 2πα′(	̃ + ˜̂F )) , (14)

where the effective parameters G̃, 	̃ and G̃s have been given by the equations

1

G̃ + 2πα′	̃
= − θ̃

2πα′ + 1

g̃ + 2πα′B̃
, (15)

G̃s = g̃s√
det

(
1 − θ̃

2πα′ (g̃ + 2πα′B̃)
) . (16)
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For the Equations (11) and selfdual θ , the dual Lagrangian (14) is equal to the
noncommutative Lagrangian L̂ (i.e., Equation (14) without tildes) if F̂ is selfdual
or ˜̂F = −F̂ − 2	 . (17)

To show invariance under this condition, again use the identity det M = det MT .
According to the Equation (17) and dual form of the Equation (5), the field

strength F̄ is

F̄ = d

c
F + 1

c
ω(1 + θω)−1 , (18)

where the matrix ω is

ω = (1 + Fθ )−1(F (1 + 2θ	) + 2	) . (19)

As expected, the Equation (18) for 	 = 0 reduces to the Equation (12) with
plus signs.

3. DUALITY OF THE DUAL THEORIES

Define the matrix �̃ as

�̃ ≡
(

ã b̃

c̃ d̃

)
=

(
d −b

−c a

)
= �−1 . (20)

Therefore, we can write

λ = ãλ̃ + b̃

c̃λ̃ + d̃
,

(
Bµν

Cµν

)
= (�̃T )−1

(
B̃µν

C̃µν

)
. (21)

Also let the parameter η̃ be

η̃ ≡ |c̃λ̃ + d̃| = 1

η
. (22)

This gives

gs = η̃2g̃s , gµν = η̃g̃µν. (23)

That is, in some equations if we change the dual quantities with the initial quantities
the resulted equations also hold. With this rule, the Equations (21) and (23) directly
can be obtained from the Equations (1) and (2).
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For generalization of the above rule let the 2-form Cµν be proportional to
Bµν as in the following

Cµν = d − η

c
Bµν. (24)

This leads to the relation

B̃µν = ηBµν, (25)

or equivalently C̃µν = 1−aη

d−η
Cµν . These equations also hold under the exchange of

the dual quantities with the initial quantities. In other words, we have (d̃ − η̃)B̃µν =
c̃C̃µν , Bµν = η̃B̃µν and Cµν = 1−ãη̃

d̃−η̃
C̃µν .

According to the Equations (2), (4) and (25), for the zero modulus 	, the
transformations of G(0), θ0 and G(0)

s are as in the following

G̃(0)µν = ηG(0)µν, θ̃
µν

0 = θ
µν

0

η
, G̃(0)

s = η2G(0)
s . (26)

On the other hand, these equations also obey from the above rule.
Since �̃ ∈ SL(2; R), we conclude that the initial theory also is SL(2; R)

transformed of the dual theory. Therefore, the mentioned rule can be written as

Initial theory
�−→ SL(2; R) dual theory,

SL(2; R) dual theory
�̃−→ Initial theory. (27)

In other words, twice dualization leaves the theory (and related equations) in-
variant. Note that “initial theory” refers to the type IIB theory or DBI theory. In
the next sections, we shall see that the rule (27) will be repeated. For example,
it also holds for the noncommutative DBI theory, ordinary and noncommutative
Chern–Simons actions. The statement (27) for the ordinary DBI theory is obvious,
i.e.,

˜̃LDBI = LDBI. (28)

4. RELATIONS BETWEEN THE EFFECTIVE VARIABLES

The noncommutative DBI Lagrangian and the SL(2; R) duality of it can be
described more generally, such that the noncommutativity parameters θ and θ̃

become arbitrary (Seiberg and Witten, 1999). Therefore, the extra moduli 	 and
	̃ are not zero (for example, the dual theory was given by the Equation (14)). The
Equations (26) guide us to introduce the following relations between the effective
metrics and the extra moduli

G̃µν = ηGµν, 	̃µν = η	µν. (29)
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According to the Equations (15) and (29) we obtain

θ̃µν = θµν

η
. (30)

This implies that, if the effective theory is noncommutative (ordinary) the dual
theory of it also is noncommutative (ordinary). Note that if we introduce the
Equation (30) then we obtain the Equations (29). The Equations (16) and (30)
give the following relation between the effective string couplings G̃s and Gs ,

G̃s = η2 Gs. (31)

The Equations (29)–(31) have the following properties. (a) They are con-
sistent with the rule (27). In other words, they can be written in the forms
Gµν = η̃G̃µν , 	µν = η̃	̃µν , θµν = θ̃µν

η̃
and Gs = η̃2G̃s . (b) For the commutative

case, i.e., θ = 0 we have θ̃ = 0. Thus, the Equations (29) change to g̃µν = ηgµν

and B̃µν = ηBµν . (c) For the variables

θ = B−1, G = −(2πα′)2Bg−1B, 	 = −B,

θ̃ = B̃−1, G̃ = −(2πα′)2B̃g̃−1B̃, 	̃ = −B̃ (32)

the Equations (29) and (30) reduce to identities. Note that these variables also
satisfy the Equation (15) and this equation without tildes. (d) For θ = θ0 the
Equation (30) gives θ̃ = θ̃0, therefore, 	 = 	̃ = 0. In this case as expected,
there are G = G(0), G̃ = G̃(0), Gs = G(0)

s and G̃s = G̃(0)
s . On the other hand,

the Equations (29)–(31) reduce to the results (26).
The Equations (25), (29), (30) and the second Equation of (2) lead to the

relations

Q̃
µν

(1)Q̃(2)ρσ = Q
µν

(1)Q(2)ρσ , Q̃
µν

(1)Q(2)ρσ = Q
µν

(1)Q̃(2)ρσ , (33)

where Q1,Q2 ∈ {G,	, θ, g, B}. That is, the quantities Q
µν

(1)Q(2)ρσ and Q̃
µν

(1)Q(2)ρσ

are SL(2; R) invariant. On the other hand, since we have ˜̃Q(i) = Q(i) for i = 1, 2,
the Equations (33) are consistent with the rule (27).

According to the Equations (29) and (31), for the following values of the dual
field ˜̂F , ˜̂F = η[±F̂ − (1 ∓ 1)	], (34)

the dual Lagrangian (14) takes the form˜̂L = η
p−3

2 L̂. (35)

After substituding (34) in (14), for the lower signs one should perform transpose
on the matrices in (14). Again use the identity det M = det MT . This Lagrangian
describes the same noncommutative Dp-brane, which also is given by L̂, but with
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the modified tension, i.e., ¯̂T p = η
p−3

2 T̂p. For the D3-brane the theory is invariant.
For the commutative case, the Equation (35) reduces to the Equation (8), as
expected.

The Equation (34) with lower signs, is generalization of the Equation (17).
The field strength F̄ , extracted from the Equation (34), is

F̄ = d

c
F + 1

c
�

(
1 + 1

η
θ�

)−1

, (36)

where the matrix � is

� = η(1 + Fθ )−1(F [∓1 + (1 ∓ 1)θ	] + (1 ∓ 1)	). (37)

Since the Equation (34) can be written as F̂ = η̃[±˜̂F − (1 ∓ 1)	̃], this with
the Equations (29)–(31) imply that, in the rule (27) the “initial theory” also can
be the noncommutative DBI theory. This also can be seen from the Equation (35),

i.e. L̂ = η̃
p−3

2
˜̂L, or equivalently ˜̃̂L = L̂. (38)

5. COMMUTATOR OF THE SL(2; R) DUALITY AND T -DUALITY
ON THE EFFECTIVE VARIABLES

Previously we have observed that the effective metric G(0)µν and the non-
commutativity parameter θ

µν

0 under the T -duality transform to G′
(0)µν and θ ′µν

0 as
in the following (Kamani, 2002)

G′
(0)µν = gµν, θ ′

0
µν = (2πα′)2(B−1)µν. (39)

The actions of SL(2; R) duality on these equations give

(̃G′
0)

µν
= ηgµν, (̃θ ′

0)
µν = 1

η
(2πα′)2(B−1)µν. (40)

Application of T -duality on the first and second equations of (26) and then
comparison of the results with the Equations (40), lead to the relations

[(̃G′
0) − (G̃0)′]µν = (η − η′)G′

(0)µν, [(̃θ ′
0) − (θ̃0)′]µν =

(
1

η
− 1

η′

)
θ ′

0
µν

, (41)

where η′ is T -duality of η. These equations imply that, on the open string metric
and noncommutativity parameter, unless η = η′, T -duality and SL(2; R) duality
do not commute with each other. We shall show that for the nonzero modulus 	,
these equations also hold.
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In the presence of the extra modulus 	, we have the following relation
(Kamani, 2002)

G′ + 2πα′	′ = (g + 2πα′B)−1(G − 2πα′	)(g − 2πα′B)−1 . (42)

Therefore, there is the following relation between the noncommutativity parameter
θµν and its T -duality θ ′µν ,

θ ′µν = −[(g − 2πα′B)θ (g + 2πα′B)]µν . (43)

According to this equation and Equation (30) we obtain

θ ′µν = −η[(g − 2πα′B)θ̃ (g + 2πα′B)]µν . (44)

That is, the T -duality and SL(2; R) duality versions of the noncommutativity
parameter are related to each other.

Action of the SL(2; R) duality on G′, 	′ and θ ′ of the Equations (42) and
(43) and also action of T -duality on G̃, 	̃ and θ̃ of the Equations (29) and (30),
and then comparison of the results, give

[(̃Q′) − (Q̃)′]µν = (η − η′)Q′
µν, [(̃θ ′) − (θ̃ )′]µν =

(
1

η
− 1

η′

)
θ ′µν

, (45)

where Q ∈ {G,	}. Let us denote the dualities of Q as Q′ ≡ TQ and Q̃ ≡ SQ.
Thus, the Equations (45) take the forms

([S, T ]Q)µν = (η − η′)(T Q)µν, ([S, T ]θ )µν =
(

1

η
− 1

η′

)
(T θ )µν. (46)

Similarly, for the effective string coupling Gs there is

[S, T ]Gs = (
η(3−p)/2 − η′2) (T Gs). (47)

Therefore, on the variables G, 	, θ and Gs T -duality and SL(2; R) duality do not
commute. In other words, the commutator of these dualities, is proportional to the
effects of T -duality.

The T -duality of the effective string coupling is G′
s = Gs√

det(g+2πα′B)
. This

implies Gs

gs
is a T -duality invariant quantity (Kamani, 2002). From this and the

Equation (31) we conclude that

G′
s

g′
s

= G̃s

g̃s

= Gs

gs

. (48)

That is, the ratio Gs

gs
also is invariant under the SL(2; R) duality. Therefore, on the

quantity Gs

gs
, T -duality and SL(2; R) duality commute.
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6. SL(2; R) DUALITY OF THE NONCOMMUTATIVE
CHERN–SIMONS ACTION

The DBI action describes the couplings of a Dp-brane to the massless Neveu–
Schwarz fields gµν , Bµν and φ. The interactions with the massless Ramond-
Ramond (R-R) fields are incorporated in the Chern–Simons action (Douglas; Li,
1996; Green et al., 1997)

SCS = 1

(2π )p(α′)(p+1)/2gs

∫ ∑
n

C(n) ∧ e2πα′(B+F ) , (49)

where C(n) denotes the n-form R-R potential. The exponential should be expanded
so that the total forms have the rank of the worldvolume of brane. In fact, this
action is for a single BPS Dp-brane.

The noncommutative Chern–Simons action for constant fields can be written
as in the following (Mukhi and Suryanarayana, 2000; Mukhi and Suryanarayana)

ŜCS = 1

(2π )p(α′)(p+1)/2gs

∫ √
det(1 − θF̂ )

×
∑

n

C(n) ∧ exp(2πα′[B + F̂ (1 − θF̂ )−1]) , (50)

also see Ref. (Liu and Michelson, 2001). This action holds for general modulus
	. It describes the R-R couplings to a noncommutative Dp-brane.

Now we study the effects of the SL(2; R) group on this action. We can apply ˜̂F
from (34). For simplicity, choose the upper signs for ˜̂F . In addition, the Equations
(25) and (30) can be used for B̃ and θ̃ . Adding all these together, we obtain

˜̂SCS = 1

(2π )p(α′)(p+1)/2η2gs

∫ √
det(1 − θF̂ )

×
∑

n

C̃(n) ∧ exp(2πα′η[B + F̂ (1 − θF̂ )−1]). (51)

Therefore, we should determine the dual fields {C̃(n)}. Since our attention
is on the type IIB theory, C̃(n) is an even form. The dual fields C̃(0) ≡ χ̃ and
C̃(2) ≡ C̃ have been given by the transformations (1). The field C(4) corresponds
to the D3-brane. It was shown in (Tseytlin, 1996; Green and Gutperle, 1996)
that the invariance of the equations of motion, extracted from the total action
SDBI + SCS , under the SL(2; R) group, gives the transformations (1) and

C(4) → C̃(4) = C(4). (52)

For the forms C̃(6), C̃(8) and C̃(10) one may use the Hodge duals of the forms C̃(4),
C̃(2) and C̃(0), which are available. However, we have the following results at least
for n ≤ 4.
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The noncommutative Chern–Simons action (50) respects the rule (27), if
twice dualization of the R-R fields are invariant˜̃C(n) = C(n). (53)

From the transformations (1) and (52) explicitly one can see this equation for C(0),
C(2) and C(4). On the other hand, using (53) (at least for n ≤ 4) and then applying
SL(2; R) transformations on the dual action (51), we obtain˜̃̂

SCS = ŜCS. (54)

From the Equations (1), (2), (6) and (20) we have ˜̃Bµν = Bµν , ˜̃gs = gs

and ˜̃Fµν = Fµν . By considering the Equation (53), we observe that the ordinary
Chern–Simons action (49) also obey the rule (27),˜̃SCS = SCS. (55)

For vanishing noncommutativity parameter, the Equation (54) reduces to (55), as
expected.

7. CONCLUSIONS

We studied the action of the SL(2; R) group on the noncommutative DBI
theory with zero and nonzero extra modulus 	. The invariance of the theory deter-
mines the corresponding noncommutative field strength F̂µν . As a consequence,
the auxiliary field strength F̄µν has been obtained. For a special value of the R-R
2-form, the SL(2; R) group on the noncommutative DBI Lagrangian produces
a theory which describes an ordinary brane with the modified tension. For the
D3-brane the resulted ordinary theory is DBI theory, as expected.

We observed that the extracted equations of the ordinary DBI and noncom-
mutative DBI theories under the exchange of the variables with their dual variables
are invariant. In other words, twice dualizing of these theories and the correspond-
ing variables and equations, does not change them. This implies that these theories
and their SL(2; R) transformations, are dual of each other.

By introducing some relations (which are consistent with the rule (27)) be-
tween the effective variables and their duals, we obtained some other equations
that are SL(2; R) invariant. Therefore, another solution for the auxiliary gauge
field was found. In this case, SL(2; R) duality of the noncommutative DBI theory
is proportional to the noncommutative DBI theory. For the D3-brane the theory is
selfdual.

We showed that the noncommutativity parameter, its T -dual and its SL(2; R)
dual have relations with each other. We found that on the open string metric, non-
commutativity parameter, the extra modulus 	 and the effective string coupling,
T -duality and SL(2; R) duality do not commute. We also observed that the ratio



SL(2; R) Duality of the Noncommutative DBI Lagrangian 33

of the effective string coupling to the string coupling under the above dualities is
invariant.

Finally, we studied the effects of the SL(2; R) group on the noncommutative
Chern–Simons action. Under two successive dualizations, similar the DBI theory,
this action remains invariant. This also occurs for the ordinary Chern–Simons
action.
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